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ABSTRACT
Many organizations have incorporated data collection
into their software processes for the purpose of pro-
cess improvement. However, in order to improve, inter-
preting the data is just as important as the collection
of data. With the increased presence of the Internet
and the ubiquity of the World Wide Web, the potential
for software processes being distributed among several
physically separated locations has also grown. Because
project data may be stored in multiple locations and in
di�ering formats, obtaining and interpreting data from
this type of environment becomes even more compli-
cated. The Web Measurement Environment (WebME),
a Web-based data visualization tool, is being developed
to facilitate the understanding of collected data in a dis-
tributed environment. The WebME system will permit
the analysis of development data in distributed, hetero-
geneous environments. This paper provides an overview
of the system and its capabilities.
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1 INTRODUCTION

Measurement has been emphasized as an e�ective
method for gaining control and insight into software ac-
tivities. Because of this, many organizations have in-
corporated data collection into their software processes.
However, just as important as the collection of data is
the presentation, understanding, and resulting actions
that accompany the data collection process. Data col-
lection must be an active component in the development
cycle of a project and not simply a passive task that re-
sults in large, mostly unused, data �les.

Collection of data is inherent in the NASA Goddard
Software Engineering Laboratory (SEL) [2] as part of
the Quality Improvement Paradigm (QIP) [3] and as
part of the Software Engineering Institute's Capability
Maturity Model (CMM) [13]. However, neither activ-
ity gives much detail on how this data should be dis-

played. How does one view such collected data in order
to present information that would be most e�ective to
the project manager in order to aid in real-time decision
making? Can we compare a new project to previously
completed projects in order to determine trends and
deviations from expected behavior? What do we even
mean by expected behavior?

The NASA SEL had developed a tool, the Software
Management Environment (SME) [6, 8], that did pro-
vide a quasi-real-time feedback on project data. The
SEL has been collecting data for over 20 years on NASA
ight dynamics software. Data would be entered in a
data base within two or three weeks of it being col-
lected, and then a program could be run to summarize
that data for SME. Management could then use SME to
display growth rates of certain project attributes (e.g.,
lines of code, sta� hours, errors found) and compare
them to previous projects with similar characteristics.
This would provide two major functions: (1) Baselin-
ing capabilities so management could understand the
developing characteristics of a given project, and (2)
Predictive capabilities by enabling management to com-
pare this project with previously completed projects and
with idealized models of growth built into the SME sys-
tem. Knowledge of software development is built into
the models of SME to allow for easier analysis of col-
lected data in the software development domain.

With the increased presence of the Internet and the
World Wide Web, the nature of software development
has changed. The Internet and the Web are seen now as
valuable tools to be used for cooperative development
in distributed environments. Recent work in the CSCW
area has addressed these new requirements. Several
tools have been built to automate selected distributed
software processes with Web technology (e.g., software
inspections [14, 12, 17], problem tracking [19, 5]). Most
of this work has been focused on automating the de�ni-
tion and enactment of a process model. Although data
measurements usually are collected automatically with
the CSCW tools, the analysis of the collected data is

1



still a mostly manual process. While the SME system
was not designed to be used in a distributed, cooperative
environment, we felt it provided a good basis for a more
e�ective tool. The remainder of this paper discusses
our system, called the Web Measurement Environment
(WebME), which provides the same basic functions as
SME, but, allowing for changing data in a distributed,
cooperative environment.

2 SYSTEM ARCHITECTURE

The WebME system has a World Wide Web interface
which provides a wide variety of users with access to
the system and the data. For our instantiation of the
WebME system, there are no restrictions to access to
the system or data. However, a similar system architec-
ture could be used within the boundaries of a corporate
intranet with appropriate security measures in place.
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Figure 1: WebME System Architecture.

The WebME system is based on a mediator architec-
ture [18]. A mediated architecture horizontally parti-
tions the architecture into three layers: end-user ap-
plications, mediating information servers, and informa-
tion resources. In the WebME context, the distributed
databases with the software engineering data are the
information resources. The data wrappers describe the
interface between the information repositories and the
mediating information server (i.e., webme). The Web
browsers and the associated HTML forms represent the
end-user application layer. The webme mediator is re-

sponsible for gathering and processing the data required
to ful�ll end-user requests and returning answers to the
end-user.

In order to describe the system architecture, a schema of
the required interfaces must be de�ned. Using a special-
ize language is a common technique used to describe a
system architecture[7, 15, 11]. For WebME, we have de-
�ned a scripting language to describe the schema of the
system architecture and the data de�nitions. In order
to create the de�nitions for the interfaces and measure-
ment types, an expert familiar with the development
environment and databases will con�gure the system
by creating a WebME script �le using the scripting lan-
guage.1 The script will be processed into measurement
class and interface de�nitions that will be accessible by
the WebME mediator as shown in Figure 2.
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Figure 2: WebME data and interface de�nition process.

When an end-user makes a request, the class and in-
terface de�nitions are used by the WebME mediator to
gather and process the necessary data. This process is
illustrated in Figure 3.
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Figure 3: Using class and interface de�nitions.

3 COMBINING DATA

There are several cases where the need to combine data
from various locations is necessary. For example, with
a collaborative software development process, in order
to assess and monitor the progress of the entire project,
data collected from each location must be combined.
Another way in which data might be combined is in the
graphical display. When similar data is collected from
two di�erent environments, it might be useful to be able

1Creating the script �le will be described in more detail in
Section 5.
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to display the data on the same graph for comparison
purposes.

The WebME system will use a data de�nition language
as part of the scripting language to facilitate the com-
bination of data in these ways. WebME will allow the
user to de�ne classes of measurement types, where a
class will represent a given development environment,
such as the NASA SEL. The measurement types (or at-
tributes) represent the data collected in the development
environment.

3.1 Class De�nitions

Each class consists of entities that possess dimensional-
ity attributes (using the notation of Kitchenham et al
[9]). Attributes may be direct or indirect. In our con-
text, a direct attribute is one in which the measured
value for the attribute can be extracted directly from
an external database. An indirect attribute derives its
value from a transformation applied to other attributes
(e.g., an equation).

The structural model of measurement described in [9]
identi�es units and values as properties of attributes.
We have added an interval (e.g., weekly, monthly) as
an additional property of the unit. A measurement
instrument uses the units and the interval to supply
the correct value for the attribute. The attribute def-
inition represents the format of the data stored in the
repository and is used to extract data from the external
database in WebME's mediator architecture.

All data that will be displayed in the WebME system
will be sequenced data with ratio scale type. For direct
measures, the measurement instrument is an executable
that will extract measured values at the desired interval
from a database. For indirect measures, the measure-
ment instrument is an equation. The allowable opera-
tions in the equations are the arithmetic operations (ad-
dition, subtraction, multiplication and division). The
units and interval properties of indirect attributes will
be inferred dimensionally from the attributes used in
the equation. These indirect attribute de�nitions will
be validated to detect invalid operations (e.g., lines of
code + hours of e�ort is dimensionally incorrect).

In WebME, attributes are grouped into classes. Enti-
ties (e.g., software projects) are assigned to a class of
attributes. Any two entities possessing the same at-
tribute can be displayed on the same graph as long as
their units are equivalent (see Section 3.2). This allows
for di�erent, but related data that are collected and
stored separately to be viewed consistently. In addition,
any attributes that are compatible (i.e., have equivalent
units) may be plotted on the same graph.

3.2 Attribute Compatibility

The units and interval properties of the attribute de�ni-
tion will be used to determine compatibility for viewing
and to validate the equations of indirect attributes. Two
attributes are compatible if the units and interval prop-
erties are name equivalent. Compatible attributes may
be displayed on the same graph.

The compatibility of attributes used in the equations of
indirect attributes must be validated. The allowed op-
erators are +, {, * and /. For addition and subtraction,
the units and interval properties of the operands must
be name equivalent. For multiplication and division,
this restriction is relaxed in that the units properties
may be di�erent, but the interval properties must be
name equivalent.

4 MODEL BUILDING

The consistent combination of data is one part of the
problem that the WebME system attempts to address.
Building meaningful models from the combined data for
the purposes of process control and improvement is an-
other.

The modeling technique used in the SME system is used
to build baseline and predictive models of growth data.
In 1993, a clustering algorithm using Euclidean distance
was investigated [10] as an alternative to the existing
SME growth models. The current growth modeling al-
gorithms appear to be a good starting point for growth
data, however, we also wanted to build baseline models
for the non-cumulative raw data. This type of data is
highly variable and it is often di�cult to uncover trends
or patterns.
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Figure 4: Scatter plot data of reported errors by week

Figure 4 represents the weekly number of error reports

3



�led for a single NASA project.2 It is hard to see any
trend or underlying model in the data. Is there any
underlying process that determines how many errors are
found each week? Can we make any reasonable models
of this process?

4.1 Financial models

One way to partition the data is based on using trend
changes as a signal for process changes. In the �nancial
markets, the price of a stock or commodity is highly
variable. An investor's objective is to buy at a minimum
price and sell at a maximum price. However, because
prices uctuate frequently, an investor would not want
to trade at every trend change in the market.

The problem of trend detection for �nancial data turns
out to be similar to our problem. We have highly vari-
able data and we want to detect major trend changes
while ignoring minor uctuations. Techniques used to
detect trend changes with �nancial data should be ap-
plicable to our domain.

In particular, �nancial markets look at long term versus
short term trends. Moving averages have long been used
in this domain, where an N -day moving average is the
average value of some feature over the past N days. If
the long term average (i.e., using a large value of N ) is
greater than the short term average (i.e., using a small
value ofN ), then a stock has a decreasing trend in value;
otherwise it is increasing. Such trends eliminate the
daily uctuations inherent in this form of data. If the
trend moves from negative to positive, then its price has
presumably reached its minimumand should be bought.
If the trend moves from positive to negative, then it
has peaked and should be sold since waiting will only
decrease its price.

The Moving Average Convergence/Divergence (MACD)
trading system [1] [16] determines when the long term
changes in a stock's value di�ers from the short term
changes, which signals a decision to buy or sell the stock.
When the trend crosses the signal line (i.e., the moving
average of the long term average less the short term
average) in a positive direction, the price is about to
rise and a stock should be bought; if it crosses the signal
line in the negative direction, a sell is indicated.

4.2 Modeling Algorithm

Based on the MACD examples, we have developed an
algorithm for analyzing each data attribute. Given the

2All data presented here is normalized from 0% to 100%. That

allows us to compare multiple projects on the same graph. The
time duration for the projects considered here range from 100 to
120 weeks { about 2 years.

raw scatter plot data for some attribute (such as given in
Figure 4), we want to reduce it to several linear segments
that best represent the governing processes during the
period represented by each segment. We will call this
the characteristic curve and our initial goal is to �nd
the end points for each such linear segment, which we
call the pivot points to this curve. Once we do that, we
can apply more traditional curve �tting techniques to
each segment in order to develop underlying models of
each process.

The three steps we have developed are:

1. Use smoothing techniques to provide a rough enve-
lope that represents the approximate behavior of the
data. This process is not su�cient by itself. For exam-
ple, the data of Figure 4 results in a smoothed curve
(Figure 5) which still has 12 local maxima when using
an 8 point moving average.

2. Determine which of the extreme points represent a
signi�cant event for these processes. Other local max-
ima (or minima) are assumed to be minor perturbations
in the data and are to be ignored. We call these signif-
icant trend changes pivot points.

3. Connect the set of pivot points into a segmented line.
This represents the characteristic curve for the original
raw data.

We outline the algorithm in the following sections:

Data Smoothing. In order to remove day to day
variability in the value of a stock, N -day moving aver-
ages are used. Often a short range moving average (e.g.,
30 days) is compared with a longer range moving aver-
age (e.g., 150 days) in order to compare local changes
to a stock's price compared with the longer range trend.
The crossover points between the short and long term
moving averages signal trend reversals.

This simple moving average, however, has a weakness.
If a critical point is reached (e.g., the value reaches a
maximum), the damping e�ects of the earlier points
in the average delay the signaling of this phenomenon.
That is, the moving average will continue to rise for sev-
eral days after the peak is reached since all points are
weighted equally in computing the average. In order
to enhance the perception of such directional changes,
the exponential moving average (EMA) is used for the
MACD trading system described earlier. Rather than
being the simple average of the last N points, the expo-
nential moving average is given by the equation:

EMAi = (1 �
2

N + 1
) �EMAi�1 +

2

N + 1
� vi
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Figure 5: Smoothed data using moving averages

where:
EMAi is the exponential moving average at time i
vi is the new data value at time i
and 2

N+1
is the smoothing constant where N is the

number of points in the average.

For N = 9, 2

N+1
has a value of .2 meaning each new

point has about twice the \impact" (20% instead of
11%) that a simple moving average would have. Each
successively older point has less of an e�ect on the to-
tal average, and the result is a moving average more
sensitive to leading edge changes.

The higher curve in Figure 5 shows the e�ects of the
EMA on the error data of Figure 4. From this EMA
of the scatter plot data, we want to extract only those
maxima and minima that represent signi�cant changes
in the underlying process.

Find signi�cant trend changes. If we could simply
take the derivative of this curve, we could solve for the
derivative being zero in order to �nd the local maxima
and minima. However, the actual (smoothed) data does
not permit such computations. We can use the EMA to
help again for this process. Between any two points we
can compute the instantaneous derivative �i =

�vi
�t

. If
we compute this for each time period t, and take the
EMA for these delta values, we get what is called in the
�nancial community the signal line (Figure 5). Where
the signal line crosses the X-axis represents a zero EMA,
or in other words, the average �i in the interval is 0,
which represents an extreme value for the curve.3 In

3In the original MACD development, the signal line was the
EMA of the di�erence between the long term and short term
EMA. Here we are only concerned with the slope of the �i curve.

our example, this signal line crosses the X-axis 7 times.
Each of these represents a critical point in the original
data.

What does this signal line represent? It is the average
slope of the instantaneous derivatives for the past N
points. If the signal line is 0, it means that the average
delta between successive points is 0 and we have a local
maximumor minimum. We simply have to go back over
the last N points to determine which value of time ti
represents that extreme value. We call such values pivot
points.

Computation of Characteristic Curve. Once we
have identi�ed the pivot points, we connect each seg-
ment with a straight line (Figure 6). This segmented
line describes the general shape of the curve we are in-
terested in. We have been able to eliminate minor hills
and valleys from the curve and have left only the major
features of the original data.

Figure 6 shows the characteristic curve computed by our
algorithm along with the original data.
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Figure 6: Raw data with its characteristic curve

One interest to us was the �rst dip noticed between
60% and 80% of project completion in the error data of
Figure 6. Looking through old records (from 1988) we
discovered that the minima point at 70% occurred just
before the start of acceptance testing for the project,
even though resource usage (i.e., hours worked) shows
no such disruption in the process. This was also the
time when the contracting organization that built the
software moved into a new building. The identi�cation
of a milestone via the collected data seemed interesting,
but the confounding inuence of the building move con-
cerned us. After looking at the characteristic curves of
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reported errors from other projects in this domain, we
discovered similar behavior before acceptance testing.

While it appears that we can identify the start of ac-
ceptance testing (at least in this NASA environment) by
the shape of the characteristic curve, we need to investi-
gate further, the meaning of the characteristic curve. In
addition, we are also working on the ability to catalog
a project by the shape of the characteristic curve.

5 USING THE WEBME SYSTEM

In this section, we present examples of how the WebME
scripting language is used. We only present the parts of
the scripting language that are necessary here to illus-
trate our examples. The words in boldface fonts are
keywords in the WebME scripting language. The words
in the normal font are the parameters that are speci�c
to the architecture being described.

5.1 Interface de�nitions

The interface de�nitions are used to describe the schema
of the system architecture and the interfaces available
in the architecture. De�nitions of hosts (i.e., the physi-
cal location of an information repository) and wrappers
(i.e., the interfaces available at the information reposi-
tory) are created through the scripting language.

To de�ne a host in WebME, the host name and port
number are de�ned using the WebME scripting lan-
guage. For example, if a data wrapper is listening to port
number 8001 on a host named aaron.cs.umd.edu for
WebME requests, the following statement would appear
in the WebME script �le:

create host aaron.cs.umd.edu port=8001;

To de�ne a wrapper in the WebME scripting language,
the host and path to the data wrapper must be identi-
�ed. For example, if an executable called getsize which
is used to extract size data from the host aaron is lo-
cated in the /aaron/webme/bin directory, the follow-
ing statement would be used:

create instrument getsize host=aaron.cs.umd.edu,
path=/aaron/webme/bin/getsize;

5.2 Combining data from multiple locations

To illustrate how the scripting language is used for the
combination of data, consider the case of a �ctitious
collaborative software development process. Assume
the development environment, called the Widget De-
velopment Division (WDD), has two locations where
measurements of the development process for a project
called SmartWidget are being collected and stored. For
this example, the only attribute being collected is size

measured in lines of code (LOC) developed each week.

If the hosts to be included in the system
are co�ee.widgets.com located in Seattle and
tea.widgets.com.uk located in London, the hosts
would be de�ned with the following statements:

create host co�ee.widgets.com port=7000;
create host tea.widgets.com.uk port=8000;

To de�ne the interfaces (UKsize and USsize) available
at each location, the wrappers would be de�ned with
the following statements:

create instrument USsize
host=co�ee.widgets.com, path=/usr/bin/getattr;

create instrument UKsize
host=tea.widgets.com.uk, path=/usr/bin/getdata;

In addition, a class representing the WDD development
environment and the attributes for size must be de�ned.

create class WDD;

/* size in lines of code for Seattle */
create attribute directWDD.USsize
with units LOC, interval week,
instrument USsize;

/* size in lines of code for London */
create attribute directWDD.UKsize
with units LOC, interval week,
instrument UKsize;

/* total size in lines of code (indirect at-
tribute) */
create attribute indirect WDD.TotalSize
using USsize + UKsize;

Finally, the project SmartWidget would have to be as-
signed to the WDD class.

assign SmartWidget to WDD;

Now, the size of the project can be monitored at the in-
dividual site level (with the USsize or UKsize attributes)
or at the entire project level (by viewing the TotalSize
attribute).

5.3 Viewing compatible data

To demonstrate how the scripting language and the sys-
tem can be used to display similar attributes on the
same graph, suppose the attributes of reported errors
(Reported), closed errors (i.e., errors that have been
resolved) (Closed) and net errors (i.e., change in num-
ber of errors discovered in the current week) have been
added to the WDD class with the following statements:
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create attribute directWDD.Reported
with units errors, interval week,
instrument getreported;

create attribute directWDD.Closed
with units errors, interval week,
instrument getclosed;

create attribute indirectWDD.Net using
Reported - Closed;

Note that the units and interval for net errors (i.e.,
WDD.Net) would be inferred from the attributes in the
equation. In this case, the units and interval would be
errors and week, respectively.

Using the rules of compatibility described in Sec-
tion 3.2, the attributes WDD.Reported, WDD.Closed
and WDD.Net, could be displayed on the same
graph in WebME as shown in Figure 7. However,
WDD.Reported andWDD.size (as de�ned earlier) could
not be displayed on the same graph because the units
are not name equivalent.
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Figure 7: Compatible attributes.

Figure 7 is a graph showing the three compatible at-
tributes using common axes. Although total errors and
closed errors apparently track each other in a similar
manner, the indirect attribute of open errors shows a
clear bulge around week 65, which should cause man-
agement to further investigate its possible cause.

6 CURRENT STATUS AND CONCLUSIONS

The use of collected data on past projects as predictors
of future project behavior is a growing phenomenon in
software development. However, development environ-
ments vary widely. It is important that the baseline pre-
dictor projects have characteristics that are amenable to
the new project being compared. Processes like the Ex-

perience factory [4] have been proposed as a means to
organize such developmental practices. However, means
must be found for passing information among such envi-
ronments or for comparing results obtained in two di�er-
ent environments. A tool like WebME gives the analyst
a mechanism for de�ning common characteristics across
such domains.

At this time, the system architecture for WebME is op-
erational allowing for access to WebME from anywhere
on the WWW. The scripting language for de�ning inter-
faces and data types is being implemented. Additional
data bases are under study in order to determine the ef-
fectiveness of our system in building indirect attributes
across a wide range of application domains.

We still need additional experience with the proposed
modeling technique before we can incorporate it into the
WebME system. However, even without such additions,
we have designed a system that aids software develop-
ers in accessing development data in various settings and
obtaining visual feedback on the relative merits of a sin-
gle project compared to a repository of related projects.
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